SOLUTION OF SOME DUAL EQUATIONS ENCOUNTERED IN
PROBLEMS OF THE THEORY OF ELASTICITY

PMM Vol. 31, No. 4, 1967, pp, 678-.689

A.A. BABLOIAN
(Erevan)

(Received November 19, 1966)

The author presents some formulas for expansion of an arbitrary function inte a series in
terms of functions

et (k=0)

X (1) = {a sinyt+r1c08mt (k=12 ...) (0.1)
e (k=0)

M (8) = {acos'rk:—'rk siny,t (k=1,2,...) (0.2)

Yy (B)=Py_y @)+ Py (2), 2,(5) = P,_; () — P, ()
Ty = knfty, 0y, 1<zt (0.3)
where Py (x) are Legendre polynomials and & is a given number.

Functions 7, (¢) and ¥, (¢) appear in the course of solving the plane problem of the theory
of elasticity for an annular sector, in a problem of torsion of a conical shaft, etc., when
solutions obtained are in the form of Fourier series and boundary conditions are satisfied
exactly on the lines § = const. In the case of a plane problem for an annular sector we have
a = 1, while in the case of torsion of a shaft we have a = 3/2.

Investigation of functions y,(x) and z,(x) resulted from the necessity of obtaining solu-
tions to dual equations containing functions Xx(t) of the following form:

ao (1) + D T (D =1() (0<t<B

k=1

fe o]
canko () + D ax, (1) =g (1) @<t<t) (0.4)
K==l
where f(¢) and g (¢) are given functions, ¢ is a known number and coefficients a, remain to
be determined.

1. In{1 and 2] it was shown that a set of functions {xx@)} foms a closed orthogonal
system in the interval 0 <t <t, amongst functions satisfying Dirichlet conditions. This
implies that a function f{tJ&L ,(0, ¢ y) can be expanded into a Fourier series in terms of
X x{¢), and that we shall have

fO=am®+ Zan®  O<t<n) (LD

at the points of continuity of f{t). Here coefficients of expansion are given by
& ty

2, 2
a,= ?H—_'-TS ) %o (D) dt, a, = WS fOw@Od @

0 0
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To obtain (1.2) we have utilised the following value of the integral:

t; yti(nt+of) (k=p£0)
S X (8) Xp () At = { 1pam1 (Mt 1) (k= p=0) (1.3)
0 0 (k= p)
Functions 7, (¢) are almost orthogonal since, when &, p # 0,
23
—a[t— (=) (pk) (1.4
N (B) My () dt = { o[
,,S +O1 () ats (1, + @) (o =F)
Despite this, we have a following expansion
0]
FO =b+ bt 4 3 b .9

Here f(t)=L ,(0, ¢,) and unknown coefficients are uniquely given by
s 179

1 L
b=—tl—Sf(:t)dx, bo=—-'—-é-h—°;t—1Sf(x)e *dz
0 1]
t

2 s\ t@mn@e (L6

bk = 141 (Yks + af)
4]

If we now insert a, from (1.2) into (1.1), put y, = k 7/t = x, 7/t, = dx and pass formally
to the limit with £, » oo, we obtain the following integral transformation formula:

‘ el 2 o0 ’ @
1) = —2aerq @) f @) ede + £ (K0 das (1) n @y @D
0 L] 0
where . <0
: (x<L0)
% (z, t) = asinzt | zcoszt, g(a) = {0 (@>0) (1.8)
Second integral transformation formula
to =2 (182 (1)@ Dy (e n=acsst—zsinst, a>0
o ¢

is obtained in an analogous manner.

2. We shall now consider fanctions y,{x) and 2, (x). Using Expressions {0.3) together
with Meler and Dirichlet-L.aplace formulas, we can easily show that for integral representa-
tions of Legendre polynomials [3]

9

pk(cose)=rangﬁ*w (2.1)
n ﬂ(xzosqa—cos())'/’ n }(cosﬁ—coscp)"

the following relations hold

- 9 "
Yy (cos0) = 2y2 S coskp coslsqdp 2 V2 { sinkg cos '3 pde
k n J (cos®— cos 8)7s n (c0s 0 — cos @) 2.2
®
z; (Cos 8) = 2V2 S sinkgsinlaqdp _ 2Y2 ¢ cos k@ sin 1z @
N T J (cos@— cos o)’ n (c030 — cos Q)"

From (0.3) and recurrent differential equations for Legendre polynomials we find that
functions y, (x) and 1, (x) satisfy

n(—2) = (—D)"56), z(—2) ="y @) 2.9
dllk (:t) _ k dzk (Z) _

k
dz —1-xz“(x)’ dz ""—1—{—3;1,"(:6)
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The last two relations of (2.3) imply that y; (%) and z,(x) are solutions of (2.9
142) L[ —2z) 2] 4 K2y, =0, (1 ¢ [ 4+2)%%] 4 g2z, =0
A+2) [ =2 Z]+hn =0 d—o) [d +9F]+ Kz =

Now constructing Lommel integrals for these functions we obtain

T e — _ Watn—kynty
Silzdx——m(ynyk*yk'!/n)—— o
ZpZp _ 1+~T ’ ’ — ny‘nzk_kykz
Si—:'f-;dx—-—m(znzk_zkzn)_ nt—k? * (2.5)
Yndz —_Zn Zndx _ yn
J1+«x n’ 1—=z  n

Let us use the following relations:
Yn (1) =2, (1) =0,  y (1) = (=)™ 2z, (1) =2
From (2.5) we obtain, that functions y,(x) and z,(x) are orthogonal on the interval — 1<
£ x< 1 and, that their weights are (1 + x)-1and (1 — x)-1respectively, i.e.

1 A 2
S lyn’ll; dr = S :n_zl; dr = { /n (n=1k) (2.6)
S R 0 (nsk)

Functions y, (x) and z,(x) are solutions of Eqs. (2.4), hence they can also be represen-

ted by hypergeometric series
Ya (@) = (="' n(l4+2) FA4+n, 1 —n 2,1, (1 4 2)
Zp(2) =n(l—a)F(14+n, 1 —n,2, Y, (1—2x) (2.7)

The hypergeometric function appearing in (2.7) was used by Tranter [4] in solving dual
equations in terms of sine series.

Taking into account results obtained by Watson {5] for asymptotic expansions of the
hypergeometric function when values of parameters a and 3 are large, we can show that as
n -+ and | x| < 1, functions y,(x) and z,(x) tend to zero as O (n"%).

From (0.3) or (2.7) we see that these functions are n-th degree polynomials (series (2.7)
is trancated at the (n-1)th term), while (2.6) and the Weierstrass theorem imply that functions
yx(x) and 5, (x) form a complete and orthogonal system in the class L ,( — 1, 1) i.e. any
function f(x) € L ,(— 1, 1) can be represented by series

f@= 2 e9,(2), [ @)= D] byz,(a) (2.8)
whose coefficients are given, inﬂ:écordance with (2.6), k’::l
1 1
an=§8f—(—?i4)-dx, bn=—g-gﬁzl)—z_7—lii)dx (2.9)

—1 -1
Examples of expansions using (2.8) which shall be utilised later, are:

1+ % Yn (cos@)cosn 3= [ Vé cos1/;B (cos B — cos (p)"/z B<9)

=1 0 (B>®
1= % zp(cos @)cosn B = {stin 1/,8 (cos  —cos By (B> @)
n=1 0 B<9 (2.10)
% Yy (COS ) sin nB = [Vﬁ cos/;8 (cos  —cos )7 (B> @)
n=1 0 (B<9
% 2, (€05 @) sin np = { V2sin/B(cos B—cos@)™* (B<Q)
n=1 0 (B>9
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Validity of these formulas when 0 < B and @ <1 can be confinned using integral repre-
sentations (2.2) and Formulas (2.9).

We sha]l now consider the dual series (0.4). Various dual series were investigated by
Cooke [6}, Tranter [4 and 6], Noble [7], Sneddon [8 and o] and Srivastav [8]. Related results
were also obtained in [ 10 and 13}

3. It is easy to see that using linear transformations and introducing new unknowns, we
can write (0.4) as

boett + D) kbxx (8) = f(8)  (0<t<B)

kel

Bhoest 4 D byxi () =g () B<t<m) (3.1
ke=1
where b and & are given numbers, f(¢) is a piece-wise continuous function, and g (¢) ia con-
tinuous and has a piece-wise continuous first derivative. The fanction X4 {¢) in (3.1) now
e (k=0)

has the form
1) =
X (8) {asinkt—{-kcoskt (k=1,2,...) (3.2

We shall introduce two operations
t

d
1-—-@5(3(‘;, —Et-——d-
1]

Applying the first one to the first Eq. and the second one to the second Eq. of (3.1), we
obtain

D (k2 -+ a?) b cos kt = F, (2) (0<t<P)
K==l (3.3)

S (kL ad) b sinkt =Ga(t)  (B<t<m)

Ke=l

Fiy=F*@t)+C, Gi(t)=0ag@t)—g ()
¢

Fi* (1) =f(t)——ce§f($) dz ¢ =°‘2]§1b"“’b" (3.4)

Let us now maltiply the first Eq. of (3.3) by cos % ¢t (cos ¢ ~ cos @ % and integrate the
result in ¢ from 0 to 6 and multiply.the second Eq. of (3.3) by cos % ¢ (cos § — cos ¢)-% and
integrate the result in ¢ from @ to 7, The number of formal manipulations and (2.2) then yield

where

3 (k2 + a?) by (cosB) = F ®)  (0<0<B)
A=l
oo (3.5)
,2 (k2 + a?) by, (cosO) =G ()  B<O<)
2

where
n

0
[ Fi*(t)costatdt o ©) = 2VZ ¢ Gi(t)cosatde
J (cost —cos ) ’ ® J(cos®— cost)

Unknown coefficients are found from (3.5) and (2.9)

] n
k 0
b = sy [S F (8) x (c0s6) tg —do + §G (6) i (cos0) tg o de] 3.7)
1]

{3.6)

FO) =20 +2Y2
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and are given in terms of the unknown magnitude C.

Simple substitution confirms the fact that (3.7) satisfies (3.3) as well as the first Eq. of
(3.1), at any value of C. If the coefficient b, is suitably chosen, then the second Eq. of
(3.1) can also be satisfied. We shall find by by multiplying the second Eq. of (3.1) by e™
integrating it with respect to ¢ from ¢t to 7 and multiplying the result by e=%t. This gives

sha(n—:
bbe*™ sha@—t Z by sinkt = e~at S g (z) ex*dz (3.8)
Ka=] t
Inserting b, now from (3.7) into (3.8) and using the value of a series given by

— S @) cos Yz d
o) k* 4 at sh an J (cos @ — cos 0)/: (5.9)
¢ _ sha(nt—t)ychap (t> @)
Qe @ {—shat cha(mn—¢q) (t<9)

i kyy(cos®)sinkt V2

we obtain, after some transformations,

ha(n—t) sha(r—t) sha@m—1) @
bb exn S - X o 24
¢ o Vishan ' Vishan >Ch“q’cos 2 99 X
 G(O)tg1a6d0  shar . ¢, ¢ G(0)tg1/s0d0 _
% é(cosq;—cose)’/’ Vish aﬂ>0ha(n ®) cos dcpé(cos(p—cose)'h
= e‘“‘Sg(:c) e*dr (Bt (3.10)
t
where (3.11)

n ]
L : ch agpcos1/: @ "G o) t id@ chagcosl/s @ d
D= § F® e 748 S(cos @ — €08 9)‘/’ e+ § ©) tg 3 §(cos @ — cos0)" ¢

Next we shall use the transformation formula for Abelian integral Egs.
a
S tg1,0d0 | f(f)coslptdt _  =m Sf(t)dt
J (costp—cose)'/'}(cose— cost)/r  2cos 1/2(P¢
9 ®
3 tg 1/, 6d0 S f(t)cosptdt k1 Sf(t) dt (3.12)
§ (cos® — cos @) J (cos # — cos 0)/r  Zcosl/2@ g

SB<e<axm
The validity of these formulas can be confirmed by considering the value of the following
integral
t
S tg /2640 _ E14

J V(cosp — cos0) (cos® — cost)  2Co8l/a@cosijpt

Eq. (3.10) gives the following relation for b,

bby — g () e=am — 2"
v —g (e Vi — D (3.13)
, The sum of the coefficients b, entering (3.10) and (3.13) can be calculated using Formu-
a
2(C -|- b
)2 b, = SF(e)S(e)tg—de+ 30(9)5(9) tgo-do = 2

h=1 0
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where

ky,, (cos 0) \ & § sha(n—g)cosl/z@
§(6) = E K ta? ~ shom J  (cos® —cos Q)

=1

Thus (8.13) and (3.14) define the constants by and C.
In the case of dual cosine series (i.e. when @ = 0 and C = — b)), the above expressions

simplify.
Let us now find expressions for the series entering the system (3.1). We shall use the
transformation formulas (3.12) and the value of a series

>k : ] 5 1
5 - 2 Xy (1YY, (cos 8) — 0.0+ V2cos1/yt (t<0) (3.16)

k + o (cosz — cos )7
2=0:0  ¢>0

9
VZa (Qu(t, 9)coslap e ehag (1> ¢)
Q (9) == — i d ’ t' = { ¥
2 sh arn OS(COSCP—COS 0) /2 Y Ql ( (P) at cha(n—g) (¢ <(q3))

dog (3.15)

k=1

When 0 <t < B, we have the following expression for the second sum of (3.1)
oo 8 J
9 t ¢ F(8)tg? . tol
V23 baxa () = COS_Z_B (9)tg /> 849 _S G (0) tg 1/2 649 ]__

= : (cost — cosB)”r (cost — cos 6)/

— V' ext [bby— g(m)e=27] — aext [S F (9) tg —-do S

e cos 1, @ do
(cos @ — cos )"

-aq; 1/, @d
§G ©) tg —dOSM] O<t<B) (3.18)

(cos @ — cos 6)"

Next we shall find an expression for a series appearing in the first Eq. of (3.1). In ca-
ses when functions f(¢) and g (t) are given, expressions for this series can be obtained by
direct substitution of (3.7) into (3.1) and use of formulas (2.10) and (3.16). In general, ex-
pression for this series is obtained in the following manner: we introduce the notation

k() = beest - 2 kb () Bt (3.19)

Then, the first Eq. of (3.1) together wu.h (3.19) will yield, in accordance with (1.1) and
(1.2),
2
by = W—"‘_i-[g f(@) e dx + §h (@) er® dx]
0

(3.20)

B ko4
b= ey |V @1 @ do + (R () 1 (@) da ]
0 B

Inserting expressions for b, from (3.20) into the second Eq. of (3.5) we obtain, after
changing the order of summation and integration,

B ]
Sf(ar) S0, r)dz + §h @) 5@, 2)dz=2-G®) @<o<m (.21
0

where

S s () °° -
S0.2) = X —yh———x——k-—— = )y (cos®) coskz + a ) _____yk(cosﬂk) smrr
haal

A=l L=l

_ VZcosyr —+ta (2 arc sin Sz sinlpz .’l:) (x < 0) (3.22)

(cos & — cos t))l sin1/, 0
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S@z)=—1+a(m—z) (=>0)
Expression {3.22) enables us to write {3.21) as
8

V’z‘S(ha)—aSh(y)dy)—ﬂ”ﬂﬂ’i— 26O +C—

J (c0s z — cos 0)/s

I

8 8 -
‘ V2coslfpz (3.23)
——OS(f (=) + ay(y) dy) (———-——-——(casxmcos oy 1) dz RO

where

S (k(z)—a S h(y) dy) dz (3.24)
Using (3.12) we can bring (3.23} to the form

L4 x
C — bZ]
§(h (x)— d§h(y)dy) dz = Gy (p) cos 5 + Z-arctg (SFE—2RTN (5 5

where

: 2 2
G@w=L2\{2eo—\(r@+al1a)x
8 0 x

X( V2coslpz _1)dx}__tg_lfi_ﬂﬂg__ (3.26)

(cos z — cos 0)/2 (cos & — cos @)

can be found from the second Eq. of (3.1).
Di‘fferentiaung {3.24) with respect to @ we obtain the following Volterra’s integral equa-
tion of second kind, from which we can find 4 (x)

x
h(i)_agh(y) dy = G, (x) (3.27)
B
Here G 4(x) is a known function
2C:s8inlfs x

d x
Gs(z) = dz [Gz (2) cos T} + V2 (cosB — cosz)/t (3.28)
From the integral Eq. (3.27) for h(x), we obtain the following final expression:

h(z) = Gs () + a§ Gs (y) ex=v dy (3.29)

Inserting 4 (x) from (3.29) into (3.20) we obtain the required values of the coefficients by,
We see from (3.29) that function 4 (%) has, at the point x = 3, the same singularity as
G 4(x). This singularity can easily be obtained from (3.28) and (3.26) by integrating the lat-
ter by parts.

4. In practice one often comes across equations of the following type

be! + D) kb, B =1() OB

k=1

bboe™ + ?}1(1—N,,)b,,xk =g Bt 4.1

where @, b and N; are given, f(¢) is a piece-wise continuous function and g (¢) is a piece-
wise smooth function. We assume that Ny are bounded from above and tend to zero with in-



Solution of some dual equations of the theory of elasticity, 701

creasing k, as e.g. 0 (k-1).
Let us write the second Eq. of {4.1) as

bboe®* -+ Z ety () =g (t) + 2 Nby, ) B<tln) (4.2)
k=1 =1
and apply (3.7) to the system (4.1) assuming t.hat the right-hand side of (4.2) is known. A
few simple transformations yield

k2 2 . )
2EED by = 2<p=+az>zvp“,,(a)+ﬂk (k=12 .. (43
where
¢ o ks, (cosB)y,(cosB)— pz, (cos B)yy (cos B)
Ik,(a)=§y,,(cose)y,,(cose>tg7dﬂ= e

1 tp (cosB) Py’ (cos B)
AL, (8) =1+ P, \P, —5 (P — ”)+231n2[52 L k+"1

k]

B, =20 3 (czs B) n 2!2 [S F3(8)y, (cos0)tg 5 de +§ G1(0)y, (cosB)tg 5 dﬂJ

0

8 v o
cos y/2dy
= — —_—, C=a? by —b "
Fa(®) §[f o) a§f (@i | M 2h—h (4
K , cos y/2dy
G2(9) —§ [ag (v) — & (V)] (0030 — cos g)

To find the coefficient by, we first insert the values of b, obtained from (4.3) into (4.2).
Then we follow the procedure similer to that used in the derivation of (3.13), also using
the value of (3.16) and the integral

S Yy (cos 0) tg 1,040 V2 coskg—(—1)* (4.5)

(cos@ —cos0)r €082 @ k

which is obtained from the first formula of (2.2) by considering it as an integral equation of
the type (3.12). Egs. (4. 2) and (4.3) yield

B ]
x ' chagpcost/zg
bboe® 2 4 a?)b,N S tg 2 4\ —
" +V23hcm 2 (P + ) yp(cos0) tg 3 d J(cosp— cose)'/’dq)_*_
V_ZCS shagsinl/; @ 2aD,
— dp — —g(m)=0 6
+ Shan (cos ¢ — cos B) /s P~ Fshax — & (4.6)

where D, is given by a formula similar to (3.11), in which functions F (@) and G (6) are re-
placed with F 2(0) and G ,(6) from (4.4).
Let us intradace into (4.3) and (4.6) new unknowns together with the following notation

204 PNy
Xo = bbpe™™, Xy = % b, Okp = T Iip (B)
0
apNy S 9 S ch ag cos 1y @
= ———— 0)tg—5 do \ ———————
“op 2 V2shan J Yp(cosB)tgp J(cos@ — cos )/ s (4.7)

_ B
2aD, Yac sh ag sin 1/,¢
Bo—g(n)+ nsh an Shm S(COSQ—COSB)V’
0
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Then {4.3) will become

oo
Xp= D) aypXp+ By (k=0,1,2,...) (4.8)
p=1
Now we shall utilise the fact that N, entering (4.1) and (4.8) are bounded from above and
tend to zero with k -+ o as O(k*?) to prove that the infinite system (4.8) is quasi-completely

regular.
Taking into account the inequalities

m 2 2
INei<%. ly,,(x)l<7—‘;. Izk(x)f<_ﬁ' when {z|<{1—¢ (4.9)

we obtain the following estimate for the sum of moduli of the coefficients accompanying the
unknowns

& 1 & » m o 2m 1
Sapl=5 3 plef;;p(B)!<‘;;+7—;gk""’_‘—_v;]p_k‘ =

Ppa=1 Pp==l
Pk
Kt —_— - oo
m 2m {1 Vk—p+Vp i m
=% 2 2 ekt + 2 <+
Yk 2, p(k—p) S opVrtk

2m [VE—i+1 1 (VE+VE=1) (VE—1) 1 J 5-4-4 In 4k
+V’~‘{ =1 Tyt VE+1 TVERLAST F "

which tends to zero with increasing k. This means that, beginning from some number kg, we
shall have

oo
D lagpl <t —e (k> ko) (4.10)
p==i
i.e. the infinite system (4.8) is quasi-completely regular. Value of k, depends on the values
of N, and can easily be found in each particular case.

Using the previous assumptions conceming f{t) and g (¢} we can show {taking (4.9) into
account) that independent tems of (4.8) are bounded from above and tend to zero with in-
creasing k, as 3, = 0 (k=3/2),

Unknown coefficients X, (or b,) entering the last relation of (4.4), the latter assuming
by virtue of (4.7) the form

oo ; X
a2 KXy Xof
C=% 2 Fra— & (4.11)
k=1

can be found from the quasi-completely regular infinite system of linear equations (4.8) and
given in terms of a constant C, since the free terms S, of this system depend on C. Inser-
ting the values of X, obtained from (4.8) into (4.11) and solving the obtained relation for C,
we obtain its value.
Having found X, we can determine the series entering (4.1). Since X tend to zero when
k -+ 00 as Xy = 0 (k=3/2), the sum of the second series of (4.1) will be a bounded and con-
tinuous function (the series converges abselutely) which can be computed by numerical
methods. The first series of (4.1) does not converge absclutely and its sum is, in general,
a discontinuous function which becomes infinite at the point ¢ =~ 3+ 0.
To separate the singularity (its principal part) of this series, we shall insert into it the
values of X; obtained from (4.8)
- 1o o FLpyBn() 1 Z B ()
2 Mt =7 2 PN Xy N g —+7 X e 412
h=1 =1 h=1 k=1
Let us use the representations
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Iip(B)=— % (00 P) Z‘p (cos B) + -% 3 z (c088) zp, (cos 0) ctg -% do
B
2 V
B, = [Fa(s)—aam) +v5 C] 2 (cos 0) — 22 [3 Fy' (0) 2 (c080) dO +
+SG,'(e)z,,(cose) de] (k=1,2...) (4.13)
B
and the following value of the series:
Z,=0Q3(0) (t<0)
o k2 (cos0) x, (2) ¥ 2sin /st
k A
= El e = (o030 —sosgys T Q@ (>0
Va { Qu(t, @)sintye
Q= SHan ) {cos8— cos g)h (4.14)
where Q,(¢, @) is given by (3.17); from (4.12) we obtain for 8<¢t<n
M sinlj;t
2‘, Mo ()= o s T << (4.15)

h=1
where @(¢) is a bounded and continuous function easy to determine in each particular case,
and M is

1 2 2
M=y E BN Xy 00sB)— VEC—ZFa@) +5G(®  (416)

In canclusion we shall note that dual series~equations in 7, (¢), yk(X) and sk(Z) as well
as dual integral equations in y (x, t) and n(x £) can be solved'in an analogous manner,
For example, to solve dual equations in y,(x) we have

D) ka,y, (cos) = £(8) (00 <LB), Z a,y, (cos0) =g(0) (B <0< m) (4.17)
A= k=1

where functions f(0) and g (0) satisg the same requirements as those in (4.1). Let us mui-
tiply the first Eq. of (4.17) by tg % 0 (cos @ ~ cos P)-% and integrate it in 8 from 0 to @,
and the second Eq. of (4.17) by tg % 0 (cos @ — cos §)~% integrating it then in & from ¢ to

. Unlumg the values of integrals (4.18)
3 ¥, (cos 0) tg 1/:040 _v3 sin k@ S Y, (cos 0) tg 1/,0d9 _ vz cos kg —(—1)*
(cos @ —cosg)/s ' “keosl/i® ' ) (cos p—cos0)r kcosl/a@

obtamed from (2.2) by considering them as integral equations of the type (3.12) we obtain,

from (4.17),
o0 oo
2 apsinke =f,(9) (V<9 <B), Z asinkp =g,(p) B<o<Ln) (4.19)
h=1 k=1

f(0)tg1/30d6

1 P 3
— —— CO08 —_—
f1 (‘P) 2 (COS 0 — cos q))ll‘

V2
(4.20)

P
81(@) = VZ a9 [00 8 =5~

Relations (4.19) yield the following values of

§ £(8)tg /20 da ]
Y (cos @ — cos 0)"
a
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3 -~
n . ]
- a :5 J1(9) sin kg do +5 g1(9)sinke do (4.21)
0 B
S ¢ n@eosthpdy , {
' f1(@)coslapdy | ( g1(P)cosl/zpde
X 0) ==
Z @Y (€05 6) 5 (cos 6 — cos @)/ é (cos 8 — cos @)/t

and

0<<o<B)
1 ]

@

k=

< 0 d f ) /

C[1(@)sinls@de (¢ g1 (@)sinl@deT
~ k s 0) = tg -5 =@ [3 1

2 2,‘2 oYk (08 9) = ctg 5~ 75 J (cos ¢ — cos )"/ +1§ (cos @ — cos 0)’/’J
B n)

Here we have used the formulas (2.8) to (2.10) and (4.21).
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