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The author presents some formulas for expansion of an arbitrary function into a series in 
terms of functions 

i 
e x/i P) = 
crt (k=O) 

asinr,t+rkcosrkt (k=f, 2, . . .) (0.1) 

eat 
l)k (t) = 

1 

(k = 0) 

acosrg --r,siny,t (k=1, 2, . . .) f0.2) 

yi; (2)= P,_, (z, + p, (2). Zk (4 = P&l (4 - Pk (2) 

+rk = knlh, 0 d t G h, --1<xq (0.3) 
where Pk (x) are Legendre polynomials and a is a given number. 

Functions q,(t) and Xk(t) appear in the course of solving the plane problem of the theory 
of elasticity for an annular sector, in a problem of torsion of a conical shaft, etc., when 
solutions obtained are in the form of Fourier series and boundary conditions are satisfied 
exactIy on the lines 8 = const. In the case of a plane problem for an annular sector we have 
a = 1, while in the case of torsion of a shaft we have a = 312. 

Investigation of functions yn(x) and Z,(X) resulted from the necessity of obtaining solu- 

tions to dual equations containing functions &(t) of the following form: 

aoXo(~) + 5 r+kXk(t)=!@) P<t<B) 
t-1 

ca'&(t) + 5 =kXk ft) = gft) fP<t<tl) to.41 
k-1 

where f(t) and g (t) are given functions, c is a known number and coefficients ok remain to 
be determined. 

1. In [l and 2l it was shown that a set of function8 t X&) 1 forma a closed orthogonal 
irystsm in the interval 0 < t < tt amongst functions satisfying Dirichlet conditions. This 
implies that a function {(t)EL&O, t t) can be expanded into a Fourier series in terms of 
X&j, and that we shall have 

f @) = 6x0 @) + $I akXk @) (0 < t < h) 



Solntion of come dual eqaations of the theory of elasticity 695 

To obtain (1.2) we have ntilissd the following valae of the integral: 
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Functions llir (t) are almost orthogonal since, when k, p f 0, 
tt 

s qk @) “rip (f) dt = I -a [* - (-l)p+k] (p #k) 

0 %h (rk’ + as) (P = 8 
Despite this, we have a following expansion 

Here f(t)_eL& tt) and unknown coefficients are uniquely given by 

b =+5 f(x)dx, bo 
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If we now insert ok from (1.2) into (1.11, pntrk = kn/t, = x, n/t, = dx and pass formally 
to the limit with tt -, m, we obtain the following integral ~~sfo~ation formula: 

(1.7) 

0 
where 

11 (“t 0 = asinxt +xcosxt, (1.8) 

Second integral transfomation formula 

OD q (2 t) 
f(t) = $1 

9) 
*dZ f(Y)q(Z, Y)dy (q(5, t)=acoszt-zsinzt, a&O) 

s 
0 0 

is obtained in an analogous manner. 

2. We shall now consider functions y&z) and z&X). Using Expressions (0.3) together 
with Meler and Dirichlet-Laplace formulas, we can easily show that for integral representa- 
tione of Legendre polynomials [ 31 

0 

p, tcos q ‘1= q S ~0s (k + W cp@ _ 
o (GOSCp-COSe)'f' 

y 

the following reletions hold 

(2.1) 

sin ke, cos l/t cpdp 

(~0~8 - co9 (pp 
(2.2) 

2 fi ’ GOS kcp sin l/s cpdrp 
q.(cosfj) = L&q ~~~~~~s~~~ = -- 

n 
I (COST-CCOSC~)"~ 

From (0.3) and recurrent differential equations for Legendre polynomials we find that 
fnnotiona y,(x) and I~(%) satiafy 

&8k (- x) = (-i$‘“&(%), zk(- x) = (-i)k+l& (x) 
‘22, (2) 

-&yk(2) 
d%(X) k 
-=~z&), r= dx 1 

(2.3) 
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The last two relations of (2.3) imply that yk(x) and z~(z) are solutions of 

(1 + %)$[(I -z)%] + kayk = 0, (1 -5) &[(I + z$$] + kazk = 0 
(2.4) 

Now constructing LZimmel integrals for these functions we obtain 

S %a'lk dz l-x 
1+x =-m !h’Yk--Yk’&,)=- ( nYk+ - k%,Q 

,i2_kka 

S 
-+j5= 1+x 
1 

- - (i?,‘zk 
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- z*‘z,) = nY,zk--YkZn 
n” - k‘J 

c vndx 
( 1+x =-+! S 

z&x Yn 
1-z =n 

(2.5) 

Let us use the following relations: 

y, (4) = z,(l) = 0, y, (1) = (-i)“‘l 2, (-1) = 2 
From (2.5) we obtain, that functions yk(z) and z~(x) are orthogonal on the interval - I,( 

,< x,< 1 and, that their weights are (1+ x)-land (1 - r)-trespectively, i.e. 

1 1 

s ’ j.!$ d,r = 
S 

s&z 2/n (n=k) 

-1 -1 0 (n#k) 
(2.6) 

Functions y,(x) and t,(X) are solutions of Eqs. (2.4), hence they can also be represen- 
ted bv hvueraeometric series 

‘-y,“(z) = (- I)“+1 n (1+ z) F (I+ n, 1 - n, 2, V, (1 + 5)) 
2, (5) = n (1 - r) F (I$- n, 1 - n, 2, l/2 (1 - 5)) 

The hypergebmetric function.appearing in (2.7) was used by Tranter [4] in solving dual 
equations in terms of sine series. 

Taking into account results obtained by Watson [5] for asymptotic expansions of the 
hypergeometrfc function when values of parameters a and 6 are large, we can show that as 
n-r-andIxl<l,f unctions y,(x) and r,(x) tend to zero as O(n+ ). 

From (0.3) or (2.7) we see that these functions are n-th degree polynomials (series (2.7) 
is truncated at the 6~1)th term), while (2.6) and the Weierstrass theorem imply that functions 
yk(x) and xk(x) form a complete and orthogonal system in the class L 2( - 1, 1) i.e. any 
function f(x) E L 2(- 1, 1) can be represented by series 

co co 

n=1 ?I==1 

whose coefficients are given, in accordance with (2.6), by 

R, = - 2” S l f @)?I*(4 dx 
1+x ’ 

b _ n l fb-9 z,(x) 
n --z- S l-x dx (2.9) 

-1 -1 
Examples of expansions using (2.8) which shall be ntilised later, are: 

1 + $j yn (cos qJ) cos n p = 
i 

p2cos~/*~(COSf3-coS(p)-“~ (P<cp) 

n---l 0 (P>(P) 

I-5 z, (cos cp) cos n f3 = 1 Jf5 sin I/$ (cos q - cos p)+ (P> q) 

l==l 0 (P<(P) 

5 y, (cos cp) sin np = 1 Jcz cos 1/*p (cos cp - cos pf” (p > cp) 

-1 0 (P<cp) 

(2.10) 

5 z, (cos cp) sin n8 = 

I 

l/Z sin r/r8 (cos 8 - cos rp)“* (P<qP) 

-1 0 @>cp) 
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Validity of these formulas when 0 < p and Cp < R can be confirmed using integral repre- 
sentations (2.2) and Form&s (2.91. 

We shall now consider the dual series (0.4). Various dual series were investigated by 
Cooke 161, Tranter [4 and 61, Noble [?I, Sneddon [3 and 91 and Srivestav [Sf. ReIated results 
were also obtained in [lo and 14. 

3. It is easy to see that using linear transformations and introducing new unk~owns~ we 

can write (0.4) as 00 

b&eat + 5 bkxr (t) = g(t) 
I-1 

(P<t<N (3.1) 

where b and a are given numbers, f(t) is a piece-wise continuous function, and g (tl is con- 
tinuous aud has a piece-wise continuous first derivative. The fnnction x&l in (3.1) now 
has the form 

Xk ft) = 
i 

eat (k = 0) 

asinktfkcoskt (/~=1,2,...) (3.2) 

We shall introduce two operations 
t 

1-u dt, S f-a 
0 

Applying tbe first one to the first Eq. aud tbe second one to the second Eq. of (3.11, we 
obtain 

where 

5 (ka + as) bk cos kt = PI (t) 
k-1 

s (k* j- a”) bk sin kt = Gr (t) 
ir=1 

Fl (t) = p1* (t) + c, G (0 = w 0) - g’ (t) 

Let us now muItiply the first Eq. of (3.3) by cos )e t (cos t - cos 6P* and integrate the 
result in t from 0 to 8 and multiply.the second Eq. of (3.3) by COB K t (COB 8 - COB t1-H and 
integrate the result in t from 8 to R. The number of formal manipulations and (2.2) then yield 

03 

where 

2 (k2 + a”) b&& (COS 8) = F (8) fO<@<Pl 
h=l 

5 (ka + a”) b& (cos 0) = G (0) 
h-1 

(3.5) 

(P <B<n) 

Unknown coefficients are found from (3.5) and (2.91 

B n 

bk = k 

2 (k” + @) 8 
p (0) $!& (CO9 0) tg + de + \ G (0) y, (60s 0) tg f de] (3.71 

0 B 
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and are given in terns of the unknown magnitude C. 
Simple substitution confirms the fact that (3.7) satisfies (3.31 as well as the first Eq. of 

(3.1), at any value of C. If the coefficient b, is suitably chosen, then the second Eq. of 
(3.1) can also be satisfied. We shall find b, by multiplying the second Eq. of (3.11 by c 4 
integrating it with respect to t from t to R and multiplying the result by e’at- This gives 

bb,,ean 
sha(n-t) 

a bk sin kt = e<f 
k==t t 

Inserting b k now from (3.71 into (3.8) and using the value of a series given by 

(3.8) 

. 
O” kyk (cos 8) sin kt 

2 k? + a2 dcp 
1. =I (3.91 

Q(o)={ 
sha(n-t)chaq (L>(P) 

-shat cha(n-q) (t<q) 

we obtain, after some transformations, 

where 

x 

=e “‘jg(z)eaxdz @<t<n) 

t 

Next we shall use the transformation formula for Abeliau integral Eqs. 
a 

9 i(t) 
4 . s tg ‘12 8 d0 

rg (cos cp - cos ep ) 
cos ‘12 tdt n 

(cos 8 - CO6 tp = 2 cos ‘12 cp rp s ’ f (t) dt 

rp . a = 2cosxL,2(p jf (t)dt 
P 

(3.121 

The validity of these formulas can be confirmed by considering the value of the following 
integral 

t 

s tg ‘12 Od0 n -- 
~ v (cos ql - cos t3) (cos 8 - cos 1) - 2 C”S ‘/2 ‘0 C(JS ‘l2t 

Eq. (3.101 gives the following relation for b, 

bb,, - g (n) e-=x = -ae-anD, 
)f/:! sh an (3.131 

The sum of the coefficients b, entering (3.10) and (3.131 can be calculated using Formu- 
la 

2-j b,= ’ ) F (0) S (0) tg + d0 + f G (0) S (0) t,g + de = ““;i- “I 
/.=l 0 P 

(3.14) 
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where 

w ky/( (cos e) s 69 = 2 
1/5 7X sha(x- 

kZ + .$2 = - sh an s cp) cos Vz P @ 
(3.15) 

1. =l 
tl (cos 0 - cos q$” 

Thus (3.13) and (3.14) define the constants 60 and C. 
In the case of dual cosine series (i.e. when a = 0 and C = - &,,I, the above expressions 

simplify. 
Let us now find expressions for the series entering the system (3.1). We shall use the 

transformation formulas (3.12) and the value of a series 

O” ktp (t) Y, (cos 0) 
’ = 2 IQ cos l/z t 

h=l 
k2 _t ,c&’ 

= Q2 (0) + 

(cost- cosep 
(t < 0) (3.16) 

2 = Qz ((3 (t > 8) 
e 

1/2a Q1(h ‘P)cos~/~~ Qz('3 = -- s Q,, 

sh an o (cos ‘p - cos ep 
P>‘P) 

&ha@-@ (t<q) 
(3.17) 

When O,< t < B, we have the following expression for the second sum of (3.1) 

v/z .$j bkxk @) = cos + [( F (y) % % ede 

k=l 
t (COS t - cos e)‘h 

,_ 5 G te) @ ‘/Z ede ] _ 
B (COS t - ~0s ef/s 

- I/Tea’ [bb,, - g(n)e”“] - aeat 
[S 

’ F (0) tg G de i e--arp ‘OS ‘I’ cp dp + 
t 

t (COSC~- cos ef/z 

(0) tg $0 ~~wa'cos'/~cPdt? ] 

t (COSC~-CCOS~~ 
(OdtdP) (3.18) 

Next we shall find an expression for a series appearing in the first Eq. of (3.1). In ca- 
ses when functions f(t) and g(t) are given, expressions for this series can be obtained by 
direct sobstitution of (3.7) into (3.1) and use of formulas (2.10) and (3.16). In general, ex- 
pression for this series is obtained in the following manner: we introduce the notation 

h(t) = bOeaf + 5 kb,Xr (t) (P<t<n; (3.19) 

IS =l 
Then, the first Eq. of (3.1) together with (3.19) will yield, in accordance with (1.1) and 

(1.2). 
‘s 

b,, = ,,f” 1 [s f (x) ear dx + 1 
0 

0 57 (3.20) 

b,= 2 
nk (k2 + a2) [[f@)xr; (x) dx + 54x) or (x)dx] 

0 B 

Inserting expressions for b, from (3.20) into the second Eq. of (3.5) we obtain, after 

changing the order of summation and integration, 
R z . . s f(+‘q6,r)dx+ Ih(x)S(~,x)dx=+C(~) (P<tI<n) (3.21) 

0 a 
where 

O” yk(cose)xk(4 s (0. r) -=: 2 

=*==1Jc c,w l:, .I 

k-1 h-1 

r;---l +a(2arcsin*--z) 
(c.(,s x - C()X e) '* 

wo) (3.22) 
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s (e, 2) = --1 +a@t---x) ix>@) 
Expression (3.22) enables us to write (3.21) as 

~‘“S!~~~,-~~~CY,~Y!,~~~~~~~~~*,,=~G(~)+C,- 

B 

where 

G2W= ~~{~G(e)--gjf(Z)+aft(y)dy) x 
76 B 0 x 

x 
?zl^cO~l)~x tg If* ede 

(00s 5 - cos e)“a (cos e - cos cp)“’ 
(3.26) 

C can be found from the second Eq. of (3.1). 
Dtff erentiatfng (3.24) with respect to Cp WC obtain the following Volterra’s integral eqna- 

tion of second kind, from which we can find h (d 

h(z)-+(y)&/= GM (3.27) 

Here C,(x) is a known function 

From the integral Eq. (3.27) for h(x), we obtain the following final expression: 
x 

h (5) = Gs @I+ a 

$ 
Cs (y) e++~) dy (3.29) 

Inserting h (xf from (3.29) into (3.20) we obtain the required values of the coefficients b,. 
We see from (3.29) that function A (xl has, at the point x = fl, the same sin~la~ty as 

c,(x). This singnlarity can easily be obtained from (3.28) and (3.26) by integrating the lat- 

ter by parts. 

4. In practice one often comes acrocrs equations of the following type 

hoe’“’ + 5 J$J* PI = f (0 PJ<r<kB 
k=l 

02 

b&&f 2 (l--Nk)~xxpJ~)=g(~) (P<t<nI 
(4. I) 

h=l 

where a, b and N, are given, f(r) is a piece-wise continuous function and g(t) is a piece- 
wise smooth function. We assume that Nk are bounded from above and tend to zero with in- 
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creasing k, as e.g. 0 (k-1). 
Let us write the second Eq. of (4.1) aa 

co 00 

bbOeut + 2 ckxk (2) = g VI + 2 N&J, PI (P< t <n) (4.2) 

k=l k=l 
and apply (3.7) to the system (4.1) assuming that the right-hand side of (4.2) is known. A 
few simple transformations yield 

M 

where 

2 tka + aa> b, = 

k 
z (P + W NpbpZkp (8) + Pk (k = 1, 2, . . . ), (4.3) 

P=l 

n 

yk(COSB)yp(cOSe)tg~dB= 
krk (cos P) YP (ccs fi) - Pzn (cos B) Yk (cos p) 

pa-ka 

nznn (PI = 1 + P,_lP, 
--l P, (00s 8) Pk’ (co8 fi> 

-Pt) +2sinup 2 
k=l k+i 

x 

&=2c 
"kIC0SP) 2Jf/z g 

k $7 
[S 

~p(e)Y~(coSe)tg&f~+ 

0 1 

Ca(t+Yk(couWg 2 Se. 1 

we) = 5 [f (~)--a[f (z)dz] (co~~~~~~e)‘b P C = ar 2 bk - bo (4.4) 
0 0 

n 

cos Yl2d.Y 
Gde)=S [ag(yk-~‘(~)l ~GOSe__osYf/, 

0 
To find the coefficient bo, we first insert the values of b, obtained from (4.3) into (4.2). 

Then we follow the procedure similar to that used in the derivation of (3.131, also using 
the value of (3.16) and the integral 

n yk (COS e) tg llaOdtl S l/z cos kq - (- i)k 
cp lcos up - cos ep =qFp k 

(4.5) 

which is obtained from the first formula of (2.2) by considering it as an integral equation of 
the type (3.12). Eqs. (4.2) and (4.3) yield 

bb,#” + vz ,“h an fi (Pa -I- a? b,N, 1 Yp @OS 0) tg + 43 1 iz”,“:;;;;,,, dq + 
P==l 

J&T 
B 

+ sh art o (cos cp - cos p,” S sh a(p sin */z cp 2aD2 
dq-- nshan -g(n)=0 (4.6) 

where D, is given by a formula similar to (3.111, in which functions F (8) and C (6) are re- 
placed with F&8) and G&8) from (4.4). 

Let us introduce into (4.3) and (4.6) new unknowns together with the following notation 

X,, = b&““, x _ 2(ka+a? 
k- 

PNP 
k bk* akp= 2 zkp@) 

B e 

a 
apNp 

Dp=- 2 ‘)/Zshan S yp(cos8jtg%d0 
0 (4.7) 

sh ag sin rfzcp 

(cos cp - cos p>” dq 
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Then (4.3) will become 
m 

Xk = 2 akpxp + pk (k=O, 1, 2, 0 . .) (4.8) 

P=l 
Now we shall utilise the fact that N, entering (4.1) and (4.8) are bonnded from above and 

tend to set0 with k + OQ as C(k*t) to prove that the infinite mystem (4.8) is qnad-oompletely 
regular. 

Taking into accosnt the ineqaalities 

we obtain the following estimate for the aum of modnli of the coefficients accompanying the 
unhllowns 

#k 

2m JfiiTCl 
+s t k-1 +hn f't/~+~k~)P(l/k-l) 1 5+4 In 4k 

I/H-t-l ’ VkT d I k m 

whfch tends to zero with &creasing k. This~means that, beginning from some number ko, we 
shall have 

00 

2 lakpl<~-e (k>ko) (4.10) 

P=l 
i.e. the infinite system (4.8) is quasi-completely regular. Value of ko depends on tbe values 
of Nk and cart easily be found in each particular case. 

Using the previous assumptions concerning f(t) and g ft) we can show (taking (4.9) into 
account) that independent terms of (4.8) are bounded from above and tend to zero with in- 
creasing k, as & = 0 W/2). 

Unknown coefficient5 Xk (or bJ entering the last relation of (4.4), the latter assuming 
by virtue of (4.7) the form 

A=1 
(4.11) 

can be found from the quasi-completely regular infinite system of linear equations (4.8) and 
given in terms of a constant C, since the free terms & of this system depend on C. Inser- 

ting the values of Xk obtained from (4.8) into (4.11) and solving the obtained relation for C, 
we obtain its value. 

Having found X, we can determine the series entering (4.1). Since Xk tend to zero when 

k+masXt=Ofk -S/2)l the snm of the second series of (4.1) will be a bounded and con- 

tinuous function (the series converges absolutely) which can be computed by numerical 
methods. The first series of (4.1) does not converge absolutely and ita aam ia, in general, 
a discontinuous fanction which becomes infinite at the point t = @ + 0. 

To separate the singularity (its principal part) of thin series, we shall insert into it the 
values of Xk obtained from (4.8) 

5 kbkXk @I= + ; PN,x, s kZq#p (PI Xk ft) O3 k”P&k tt) 
k* + a* +f )zl k*+aa 

(4.12) 

h=l p=1 &=I 6 
Let us use the representation5 
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r,,(P)=- 
Zk (cos 8) Y, (cos PI 

. k, +fjz*(cose)ip(cose)ctg ;de 
6 

2 l/z 
PI,= nk [ Fa(P)-G*(P) ++ 3 2Jfz 8, 

Z& (cos 3) - z 
[ 

1 FI’ (ft) Zk (case) de + 

0 
Iz 

+ 1 Ca’ (e) Zk (c0s e) de I @=I, 2, . . .) (4.13) 

and the following value of the series: 

& = Qs (0) (to) 

xa= 2 
O3 kz, (~0s 0) x, W = _ 1/2 sin yat 

ka + aa + cm) (c-e) 
k=l 

tcOs e - cos tp 

Qs = fia n Ql(t, cp)sinl/at 
sh- s I/ dQ (case-COSQ) ’ 

where Ql(t, cp) is given by (3.17); from (4.i2) we obtain for/C?< t < n 

(4.14) 

%Jr (0 = 
M sin r/r t 

pas p _ COS ,p. + q (4 (B<t<n) (4.15) 

A=1 
where q(t) is a bounded rutd continuous function easy to determine in each particular case, 
andMis 

M=2 V2h=l 

-Fi 
kNkXkyk (ecu g) - IQ C - a Fa (P) + ” Ga (P) (4.16) 

In conclusion we shall note that dual series-equations in 7 (t), yk(z) and zkk) as well 
as dual integral equations in x(z, t) and q&, t) can be solve d 

For example, to solve dual equations in y*(x) we have 

in an aualogcas manner. 

5 kakYk(ccS3)=f(3) (0<3<3), 

m 

2 ak~k (COS e) .= g (e) (p < 8 < n) (4.17) 

1-1 k=l 

where functions f(8) and g(e) satis 
tiply the first’Eq. of (4.17) by tg H “8 

the same requirements as those in (4.1). Let u6 mnl- 
(cos 8 - cos T)-n and integrate it in8 from 0 to ‘p, 

and the second Eq. of (4.17) by tg W &cos Q - 
R. Utilising the values of integrals 

COB 8)-n integrating it then in 8 from cp to 

(4.18) 

y yk (COS e) tg $ede s = v2 sin W i, Y;c~;~;~s~~,~ 
’ =Jfz 

cos krg -(-I)’ 

,, (COS 8 - cos (pp. ~COS l/aQ ’ -k cos ‘/a Q 

obtained from (2.2) by considering them as integral equations of the type (3.12) we obtain, 
from (4.17), 

co co 

2 aksinkv=fl(q) (n<cp<P), 2 %SinkQ=gl(cp) (P<Q.<z) (4.19) 
h=l k=l 

(4.20) 

Relations (4.19) yield the following values of ak 
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and 

a (9) ~0s ‘la cp dv 

(4.211 

(8<8\(P) 

kakyk (cos 6) = ctg 2 x 

(COS e - cos ffp 

e 

Here we have used the formulas (2.81 to (2.10) and (4.21). 
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